Collapsed abnormal pollen1 gene encoding the Arabinokinase-like protein is involved in pollen development in rice.
نویسندگان
چکیده
We isolated a pollen-defective mutant, collapsed abnormal pollen1 (cap1), from Tos17 insertional mutant lines of rice (Oryza sativa). The cap1 heterozygous plant produced equal numbers of normal and collapsed abnormal grains. The abnormal pollen grains lacked almost all cytoplasmic materials, nuclei, and intine cell walls and did not germinate. Genetic analysis of crosses revealed that the cap1 mutation did not affect female reproduction or vegetative growth. CAP1 encodes a protein consisting of 996 amino acids that showed high similarity to Arabidopsis (Arabidopsis thaliana) l-arabinokinase, which catalyzes the conversion of l-arabinose to l-arabinose 1-phosphate. A wild-type genomic DNA segment containing CAP1 restored mutants to normal pollen grains. During rice pollen development, CAP1 was preferentially expressed in anthers at the bicellular pollen stage, and the effects of the cap1 mutation were mainly detected at this stage. Based on the metabolic pathway of l-arabinose, cap1 pollen phenotype may have been caused by toxic accumulation of l-arabinose or by inhibition of cell wall metabolism due to the lack of UDP-l-arabinose derived from l-arabinose 1-phosphate. The expression pattern of CAP1 was very similar to that of another Arabidopsis homolog that showed 71% amino acid identity with CAP1. Our results suggested that CAP1 and related genes are critical for pollen development in both monocotyledonous and dicotyledonous plants.
منابع مشابه
GLUCAN SYNTHASE-LIKE 5 (GSL5) plays an essential role in male fertility by regulating callose metabolism during microsporogenesis in rice.
Callose plays an important role in pollen development in flowering plants. In rice, 10 genes encoding putative callose synthases have been identified; however, none of them has been functionally characterized. In this study, a rice Glucan Synthase-Like 5 (GSL5) knock-out mutant was isolated that exhibited a severe reduction in fertility. Pollen viability tests indicated that the pollen of the m...
متن کاملThe Arabidopsis thaliana gametophytic mutation gemini pollen1 disrupts microspore polarity, division asymmetry and pollen cell fate.
Pollen development and male gametogenesis are critically dependent upon cell polarization leading to a highly asymmetric cell division termed pollen mitosis I. A mutational approach was adopted in Arabidopsis thaliana to identify genes involved these processes. Four independent gemini pollen mutants were isolated which produce divided or twin-celled pollen. The gemini pollen1 mutant was charact...
متن کاملMolecular Analysis of A2-genes Encoding Stage-specific S Antigen-like Proteins among Isolates from Iranian Cutaneous and Visceral Leishmaniasis
Objective(s) Leishmania can lead to a broad spectrum of diseases, collectively known as leishmaniasis. The A2 gene/ protein family could be one of the most eligible candidate factors of virulence in visceral leishmaniasis (VL). The previous results confirmed that in Leishmania infantum, several A2 proteins are abundantly expressed by the amastigote, but not the promastigote stage. As there are...
متن کاملExpression of Genes Encoding Protein Kinases During Flower Opening in Two Cut Rose Cultivars with Different Longevity
Ethylene plays an important role in wide-ranging aspects of plant growth and development, includingfruit ripening, leaf and flower senescence. In this study, the expression patterns of two genes involved in theethylene signal transduction pathway (RhCTR1 and RhCTR2) were investigated during the flower openingstages in two Rosa hybrida cultivars, ‘Black magic’ and ‘Maroussia’, ...
متن کاملThe Novel Plant Protein INAPERTURATE POLLEN1 Marks Distinct Cellular Domains and Controls Formation of Apertures in the Arabidopsis Pollen ExineC
Pollen grains protect the sperm cells inside them with the help of the unique cell wall, the exine, which exhibits enormous morphological variation across plant taxa, assembling into intricate and diverse species-specific patterns. How this complex extracellular structure is faithfully deposited at precise sites and acquires precise shape within a species is not understood. Here, we describe th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 162 2 شماره
صفحات -
تاریخ انتشار 2013